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Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder,
Part I: Methods and Power Analysis
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This is the first of three articles on a meta-analysis of genome scans of schizophrenia (SCZ) and bipolar disorder
(BPD) that uses the rank-based genome scan meta-analysis (GSMA) method. Here we used simulation to determine
the power of GSMA to detect linkage and to identify thresholds of significance. We simulated replicates resembling
the SCZ data set (20 scans; 1,208 pedigrees) and two BPD data sets using very narrow (9 scans; 347 pedigrees)
and narrow (14 scans; 512 pedigrees) diagnoses. Samples were approximated by sets of affected sibling pairs with
incomplete parental data. Genotypes were simulated and nonparametric linkage (NPL) scores computed for 20
180-cM chromosomes, each containing six 30-cM bins, with three markers/bin (or two, for some scans). Genomes
contained 0, 1, 5, or 10 linked loci, and we assumed relative risk to siblings (lsibs) values of 1.15, 1.2, 1.3, or 1.4.
For each replicate, bins were ranked within-study by maximum NPL scores, and the ranks were averaged (Ravg)
across scans. Analyses were repeated with weighted ranks ( for each scan). Two P values were�N [genotyped cases]
determined for each Ravg: PAvgRnk (the pointwise probability) and Pord (the probability, given the bin’s place in the
order of average ranks). GSMA detected linkage with power comparable to or greater than the underlying NPL
scores. Weighting for sample size increased power. When no genomewide significant P values were observed, the
presence of linkage could be inferred from the number of bins with nominally significant PAvgRnk, Pord, or (most
powerfully) both. The results suggest that GSMA can detect linkage across multiple genome scans.

Introduction

Schizophrenia (SCZ; locus SCZD [MIM #181500]) and
bipolar disorder (BPD; loci MAFD1 [MIM 125480] and
MAFD2 [MIM 309200]) are severe, common, geneti-
cally complex psychiatric phenotypes. As discussed in
parts II and III of this series, there have been at least 20
SCZ and 22 BPD genome scans to date, with others in
progress. Most twin and family studies suggest that there
are independent genetic factors underlying these disor-
ders (Levinson and Mowry 2000), but overlapping fac-
tors remain a possibility (Berrettini 2000): severe BPD
cases have symptoms resembling SCZ, “schizoaffective”
cases with mixed symptoms have increased familial risks
of both disorders, and there are chromosomal regions
in which linkage evidence has been reported for both
SCZ and BPD. Most of the available genome scan studies
were initiated early in the 1990s and have been relatively
small; for SCZ, the average study included ∼60 pedi-
grees, and for BPD the average study included 28. There
have been only one BPD and three SCZ studies reported
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with 1100 pedigrees in the complete scan, although a
number of larger studies are currently in progress.

Although statistically significant findings have been
reported, and some of these have been supported by
other studies, there is no locus, for either disorder, that
has consistently produced evidence for linkage in most
studies. It is, therefore, likely that susceptibility is con-
ferred by DNA sequence variations at combinations of
loci, each with a small effect on risk (common poly-
genes), that the loci of greatest effect vary considerably
across families and samples (locus heterogeneity), or
both. It may be necessary to combine the results of
multiple studies to have adequate power to detect these
loci, until much larger samples are available.

The present series of articles uses a rank-based method,
genome scan meta-analysis (GSMA) (Wise et al. 1999),
to evaluate the evidence for linkage across available SCZ
and BPD genome scans. This first article briefly reviews
the theoretical basis for the method and then describes
a set of simulation studies that estimate the power of
GSMA to detect linked loci in data sets comparable to
the SCZ and BPD data sets, across a range of genetic
models, providing empirical standards for assessing sta-
tistical significance. The second and third articles then
describe the GSMAs of SCZ and BPD, respectively (Lewis
et al. 2003 [in this issue]; Segurado et al. 2003 [in this
issue]).
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Several other strategies are available for meta-analysis
of linkage data. The most robust approach would be to
obtain the original genotypes for each study, construct a
combined map of the markers, and perform new linkage
analyses. However, the genotypes are not available for
all SCZ and BPD studies and in some cases are restricted
by industry relationships. Construction of a combined
map has also been problematic, although the new deCode
map (Kong et al. 2002) should make this easier in the
future. An alternative approach, multiple scan probabil-
ity (MSP) (Badner and Gershon 2002b), has been applied
to published SCZ and BPD data (Badner and Gershon
2002a). This approach combines P values after correcting
for the size of the linkage area. GSMA and MSP are
compared further below.

GSMA has a number of advantages over other avail-
able methods. It requires only placing markers within
30-cM bins, rather than determining precise positional
relationships (although precision in localizing the link-
age signal is thereby reduced). Because raw data are not
required, it is straightforward for investigators to pro-
vide the necessary results (linkage scores, P values, or
ranked data) for each location. When several genetic
analyses have been performed in a particular study, re-
sults can be maximized to produce a single set of ranks
for that study. No assumptions are made about models
of inheritance or of genetic heterogeneity. However,
GSMA provides no formal test of genetic hetereoge-
neity, and interpretation of genomewide statistical sig-
nificance currently relies on empirical grounds.

In contrast to the GSMA, meta-analysis in epidemi-
ological studies provides a combined effect size (e.g.,
relative risk) with its confidence interval. These methods
have directly interpretable parameter values and allow
testing of heterogeneity between studies, but they re-
quire each included study to use the same statistical
analysis and to test the same hypothesis. Such methods
are difficult to apply to linkage studies, which com-
monly report a LOD score (i.e., a measure of signifi-
cance) and not an effect size. Their extension to assess
evidence of linkage across a region is also not straight-
forward. Novel methods for meta-analysis of linkage
studies are therefore needed.

In summary, on the basis of the empirical standards
for assessing significance reported in this article, the
GSMA of SCZ genome scans produced significant ev-
idence for linkage for 12–19 of 120 bins, depending on
the approach to assessing significance. By contrast, the
GSMA of BPD scans produced no clear statistically sig-
nificant evidence for linkage, and the analysis was com-
plicated by the many combinations of diagnoses in-
cluded in linkage analyses by different studies. The bins
with nominally significant P values for BPD showed no
clear overlap with the most significant bins for SCZ.
Results for each disorder and their implications are dis-

cussed in the second and third articles in this series
(Lewis et al. 2003 [in this issue]; Segurado et al. 2003
[in this issue]).

Rationale for the Simulation Studies

The simulation studies were intended to clarify the
kinds of genetic effects that might be detected by GSMA
in the SCZ and BPD data sets. Simplifying assumptions
were necessary, given the unlimited range of possible
genetic models. GSMA should have the greatest power
to detect effects that are present in a substantial number
of the individual studies (common polygenes) and less
power to detect effects that are present in very few fam-
ilies or samples (extreme locus heterogeneity). We there-
fore designed a set of simulation studies based on the
common polygene model. We recognize that there could
be susceptibility loci for SCZ and/or BPD that can be
detected only in particular ethnic groups or pedigree
structures. As in all studies of complex disorders, GSMA
can only produce positive evidence for certain effects; it
cannot exclude other hypotheses.

There are advantages to using simulated samples of
affected sibling pairs (ASPs) to model common poly-
genes. For families containing a single ASP, if one ignores
diagnoses in parents or other relatives and if transmis-
sion is not recessive (i.e., if risks are similar in sibs, par-
ents, and offspring), then there is a straightforward re-
lationship between the locus-specific relative risk to
siblings of affected probands (lsibs) and the power to
detect linkage for either a single major locus or a mul-
tiplicative interaction among loci (James 1971; Risch
1987, 1990). Studying samples of ASPs therefore sim-
plifies the simulations, because the exact choice of pa-
rameter values becomes unimportant as long as they
predict the desired locus-specific lsibs (although, in the
real case, lsibs values can be distorted by imprecise es-
timates of population prevalence, particularly for rarer
disorders). A disadvantage of this approach is that ex-
tended pedigrees could have greater power under certain
genetic models, but it would have been difficult here to
select a limited yet plausible range of models. Much of
the linkage information in available SCZ and BPD sam-
ples is contained in small nuclear families and, thus, in
the sharing of alleles by ASPs. Therefore, we decided to
assess the power of GSMA in samples of families with
two affected sibs each (independent ASPs). Only dom-
inant transmission models were studied, because reces-
sive inheritance is unlikely, given the absence of differ-
ences between risks to sibs versus risks to parents/
offspring for either disorder (Risch 1990) and because
ASPs have less power to detect linkage under dominant
transmission and, thus, results should be conservative.
For comparison, recessive inheritance has been studied
for one of the models at the lowest value of lsibs (1.15),
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and power was indeed substantially greater than for
dominant transmission.

There is a common misconception that ASP analyses
cannot detect linkage in the presence of genetic heter-
ogeneity. For a known risk allele, locus-specific lsibs could
be computed by genotyping a population-based sample
to establish the risk allele frequency and penetrances and
then determining the relative risk to a carrier probands’
sibs, parents, and offspring versus the population risk.
In the absence of recessive effects, risks to siblings, par-
ents, and offspring will be similar, and, in families trans-
mitting the risk allele, ASP identical-by-descent (IBD)
allele sharing would be predicted by the locus-specific
lsibs: the proportion of ASPs sharing 0 alleles IBD, z0, is

(Risch 1990). However, in linkage studies, the0.25/l sibs

risk locus is unknown, and sharing is measured at nearby
marker loci. If 20% of probands carry an allele that
increases risk to sibs by threefold, the observed marker
z0 will be the weighted average of z0 in the 80% families
with no linkage (0.25) and in the 20% families with
linkage ( ); thus, populationwide0.25/3 p 0.0833 z p0

, and power will be similar to that for a locus-0.21667
specific . Power will bel p 0.25/0.21667 p 1.1538sibs

similarly reduced for nonparametric analyses and for
parametric heterogeneity LOD score analyses. Thus, in
the studies presented here, genetic effects are expressed
as populationwide lsibs. Results would be similar re-
gardless of whether each locus produced a smaller in-
crease in risk in many families or a larger increase in a
small proportion of families.

We therefore estimated, for each actual SCZ or BPD
genome scan, the number of ASPs with roughly equivalent
linkage information, as described below. Genotypes were
simulated for large pools of ASP families (two parents of
unknown diagnosis and two affected siblings) on the basis
of genetic models predicting specific values of lsibs or no
linkage, and appropriate types and numbers of ASPs were
randomly drawn from the pools of families. Given the
lsibs values used here (1.15–1.4), individual samples in
each replicate varied greatly in IBD sharing proportions,
as would be observed with either a common polygene
model or a moderate locus heterogeneity model. Linkage
analyses were performed using nonparametric linkage
(NPL) Zall scores (GENEHUNTER 2.0), which correlate
highly with ASP analyses. NPL scores simplified the sim-
ulation procedure because, even when multipoint analyses
are used (as was the case here), NPL scores maximize at
marker loci rather than between loci, so that only one
data point per marker had to be considered.

Material and Methods

GSMA

GSMA was developed to deal with the diverse study
designs, analysis methods, and marker densities used in

genome scan studies. GSMA divides the autosomes into
120 bins of ∼30 cM in length (X and Y chromosomes
are not considered here). The 30-cM bin width is the
largest that divides the smallest chromosomes into two
bins each, and it ensures that scores within bins are
correlated strongly and those between bins more weakly;
for the real data sets in the following two articles (Lewis
et al. 2003 [in this issue]; Segurado et al. 2003 [in this
issue]), we have assessed the effects of bin placement by
combining adjacent bins, but we have not comprehen-
sively studied alternative bin widths. For consistency
across GSMAs, the boundaries of these bins are defined
by Généthon markers, as shown in the following two
articles (Lewis et al. 2003 [in this issue]; Segurado et al.
2003 [in this issue]). Thus, markers located between ∼0
cM and 30 cM on chromosome 1 are assigned to bin
1.1, those between 30 cM and 60 cM to bin 1.2, etc.
To simplify the simulation studies reported here, a 3,600-
cM genome was assumed, comprised of 20 180-cM au-
tosomes, each containing six bins.

The ranking procedure is illustrated in appendix A.
In brief, for each of N studies, the bins are ranked (1 p
best) on the basis of the maximum linkage score or low-
est P value observed within each bin. These are within-
study ranks (Rstudy). All negative linkage scores are con-
sidered equivalent to 0, for consistency with methods
that produce no negative values—we did not study the
influence of this “floor” effect on results (i.e., ignoring
the degree of negativity of a score, which could coun-
terbalance a very positive score in another study). For
bins with the same maximum scores (such as those with
0 scores), each bin is assigned the mean value of the
ranks in their range. For weighted analyses, each rank
is multiplied by the weight for that study—here, the
standardized (see below). Then, the�N (affected cases)
average rank (Ravg) is computed for each bin, across all
N studies. The mean is 60.5 under the null hypothesis,
and values closer to 1 indicate a clustering of evidence
for linkage in that bin. Theoretical thresholds of signif-
icance for unweighted analyses are shown in order to
provide the reader with a sense of the relevant ranges
of values for different sample sizes. (Note: previous
GSMAs reported Rstudy values ranked in descending or-
der and summed rather than averaged them. The two
procedures are statistically identical, but it is more in-
tuitive for 1 to be “best.”)

The assessment of statistical significance is summa-
rized in the third table of appendix A, in table 1, and
in figure 1.

PAvgRnk is the pointwise probability of observing a given
Ravg for a bin by chance, in a GSMA of N studies (third
table in appendix A). This can be determined theoreti-
cally (see appendix B) or by permutation: for a GSMA
of N studies, for each permuted replicate, the observed
120 Rstudy values for each study are randomly reassigned
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to bins and then averaged across studies for each bin.
At least 5,000 replicates are produced, or a larger num-
ber to produce stable estimates of small or marginal
P values. If the observed Ravg is �38.9, then PAvgRnk is
the proportion of bins in the random replicates with

(e.g., among 120 bins # 5,000 replicates).R p 38.9avg

Pord (short for “PAvgRnkForder”) is the probability of ob-
serving a given Ravg for a bin by chance in bins with the
same “place” in the ascending order of Ravg values in
randomly permuted replicates (table 1; fig. 1). Thus, in
the permutation test described above, the Ravg values for
each replicate are now sorted by size. If the observed
fourth-best , Pord is the probability of ob-R p 31.0avg

serving a value �31.0 in the 5,000 fourth-place bins in
the replicates. Consider the analogy of a race: PAvgRnk

determines which bins are the “fastest runners,” whereas
Pord determines whether it is a “fast race” (i.e., whether
the top finishers all ran faster than the top finishers in
most races). As shown by the simulation studies reported
below, it is this aggregate information about the set of
most significant bins that provides additional informa-
tion about linkage when genomewide significance is not
observed for PAvgRnk.

PAvgRnk and Pord have been computed as (r � 1)/(n �
, where r is the number of replicates exceeding a par-1)

ticular score and n is the total number of replicates. As
explained by North et al. (2002, p. 439), “if the null
hypothesis is true, then the test statistics of the n rep-
licates and the test statistic of the actual data are all
realizations of the same random variable,” and thus the
P value is more accurate when the data set being tested
is included in the ranking of all known outcomes. Like
PAvgRnk, Pord is a pointwise value—∼5% of bins will have

in unlinked replicates, although these valuesP � .05ord

will be scattered throughout both large and small ranks.
The 5% threshold for genomewide significance of each
type of P value must therefore be corrected for 120 bins:

. This is larger than the threshold of.05/120 p .000417
pointwise for linkage results (Lander andP p .00002
Kruglyak 1995), because, for GSMA, inference is re-
stricted to discrete bins of 30 cM. Statistical properties
of Pord, including nonindependence of the values, are
discussed further below.

The terminology described above is summarized in
appendix C.

Description of the Samples

The simulated GSMA data sets were based on three
of the SCZ and BPD data sets described in the second
and third papers in this series, respectively.

1. The simulated SCZ data sets (table 2) approximated
the linkage information of the 20 genome scan anal-
yses from 17 independent projects included in the
SCZ GSMA, using narrow diagnoses (usually SCZ

plus schizoaffective disorders). Simulated sample
sizes were the reported number of ASPs in a cor-
responding study or an estimate based on a mul-
ticenter SCZ sample (Levinson et al. 2000), where
(N[genotyped cases] � N[informative pedigrees]) ≈

. The proportion of1.39 # (N[independent ASPs])
genotyped parents was as reported or was estimated
from study descriptions and was increased when
many unaffected relatives were genotyped. Average
marker spacing was 10 or 15 cM, similar to the
corresponding study.

2. The simulated BPD data sets resembled sets of ge-
nome scans in the BPD GSMA. These studies con-
sidered various diagnostic combinations of bipolar-
I, bipolar-II, schizoaffective disorder–bipolar type,
recurrent major depression, and sometimes other
diagnoses. Thus, the number of affected cases and
informative families varied according to the model.
The simulated data sets resembled those for the two
narrowest models considered in the BPD GSMA:
the BP-VN (very narrow) data set (table 3) includes
nine simulated samples whose sizes resemble those
of the nine BPD scans analyzed under a very narrow
diagnostic model, considering only BPI and SAB as
affected; the BP-N (narrow) data set (table 4) in-
cludes 14 simulated samples whose sizes resemble
those of the 14 BPD scans analyzed under a narrow
model, considering BPI, SAB, and BPII cases as af-
fected. Numbers of ASPs were determined as for
SCZ, with zero, one, or two genotyped parents each
in ∼33% of families, on the basis of the SCZ data
(because pedigree structure details were sometimes
unavailable). Average marker spacing was 10 cM.

Simulation Procedure

Genotypes were created by simulation for chromo-
somes with either no linked locus, or with one linked
disease locus under one of four dominant genetic mod-
els:

1. [ , ,l p 1.15 q(D) p 0.434 f(dd) p 0.01sibs

];f(Dd,DD) p 0.1
2. [ , ,l p 1.2 q(D) p 0.0169 f(dd) p 0.006sibs

];f(Dd,DD) p 0.03
3. [ , ,l p 1.3 q(D) p 0.0173 f(dd) p 0.005sibs

];f(Dd,DD) p 0.03
4. [ , ,l p 1.4 q(D) p 0.0244 f(dd) p 0.004sibs

];f(Dd,DD) p 0.025
where D indicates the disease allele, d the wild-type al-
lele, q the allele frequency, and f the penetrance. This
range of values was selected because samples of 500–
1,000 ASPs have been shown to have reasonable power
to detect linkage at values ∼1.3–1.4, with power in-
creasing rapidly above this range and decreasing rapidly
below it (Hauser et al. 1996).
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Table 1

P Values Based on Ordered Average Ranks (Pord)

BIN

OBSERVED

Ravg
a PAvgRnk

RANDOMLY PERMUTED REPLICATESb

Pord
c

Ravg

Replicate
1

Ravg

Replicate
2 …

Ravg

Replicate
5,000 Mean Ravg � SD

1st Place 30.3 .00006 35.8 41.1 … 36.6 39.2 � 3.1 .0104
2nd Place 31.5 .00015 38.5 43.0 … 42.4 42.0 � 2.3 .0002
3rd Place 34.2 .00044 40.8 43.4 … 45.0 43.6 � 1.9 .0002
4th Place 34.3 .00045 40.9 44.0 … 45.5 44.7 � 1.7 .0002

… … … … … … … … …
120th Place 82.2 .99 83.1 77.2 79.1 81.5 � 3.0 1.0

a Weighted Ravg values for one GSMA replicate (20 studies, 10 disease loci, ; ed2md8 in table 5),l p 1.15sibs

sorted with the first-place (“best”) bin at the bottom of the column.
b Rstudy values were randomly reassigned into columns, and Ravg was computed for each bin of each replicate

and then sorted. Means and SDs describe the Ravg distributions for 1st-place, 2nd-place, etc., bins with no linkage.
c “By chance, how frequently would the average rank for a bin in the same place be as low as or lower than

the observed average rank?” , where r is the number of randomly permuted replicates forP p (r � 1)/(n � 1)ord

which the Ravg of the jth-place bin is less than or equal to the observed jth-place Ravg, and n is the number of
replicates (North et al. 2002). See figure 1 for illustration.

Figure 1 Determining Pord: observed and expected ordered Ravg values. The black line shows the 120 observed Ravg values, sorted with
the first-place bin on the right. The light gray line and vertical error bars show the mean � 2 SD of the jth-place bin from 5,000 random
permutations. In the absence of linkage, Ravg values lower than the expected distribution are observed infrequently throughout the genome.
With linkage, they are clustered among the highest values of Ravg, as shown here. As shown in table 1, Pord is the probability of observing a
given value of Ravg (black line) by chance, given its place in the order of observed Ravg values, which is determined from the distribution of
ordered Ravg values (light gray line and error bars).

To confirm that power would be greater for reces-
sive transmission, a single set of replicates was created
for the SCZ data set as discussed below, using pa-
rameter values predicting [ ,l p 1.15 q(D) p 0.276sibs

, ].f(dd,Dd) p 0.01 f(DD) p 0.04
LINKAGE-format files were created with sets of fam-

ilies with two parents of unknown diagnosis and two
affected offspring. Simulated genotypes were created us-
ing GENSIM (Kruglyak et al. 1996; Kruglyak and Daly
1998). The structure of the simulated chromosomes is
shown in figure 2. Each chromosome was 180 cM long
(six 30-cM bins). Bins contained three markers (10-cM

spacing), except for four SCZ scans with 15-cM spacing.
Disease loci were conservatively placed halfway between
adjacent markers, given that many other aspects of the
procedure were idealized (e.g., identical marker maps in
all studies, no genotyping errors).

Four types of genomes were created (table 5), with 1,
5, or 10 linked loci in “edge” or “mid” bins. Lower
multipoint NPL scores were anticipated near the edges
of chromosomes because of reduced information con-
tent. The value of lsibs was constant for all disease loci
in a simulated genome. Sets of “linked” chromosomes
for 10,000 families were created for each of 24 com-
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Table 2

SCZ Simulated Data Set

SAMPLE

ACTUAL STUDY SIMULATION STUDYa

NO. OF ASP FAMILIES

WITH N GENOTYPED

PARENTS

No. of
Pedigrees

No. of
Cases Weight

Map
Density

(cM)
No. of
ASPs N p 2 N p 1 N p 0

1 294 669 2.3165 10 330 135 115 80
2 185 390 1.7687 10 240 85 80 75
3 71 171 1.1711 10 90 85 5 0
4 81 170 1.1677 15 90 0 0 90
5 77 179 1.1982 15 75 12 19 44
6 67 164 1.1469 15 75 12 19 44
7 74 169 1.1643 15 75 12 19 44
8 54 146 1.0822 10 55 32 19 4
9 60 132 1.0290 10 72 15 25 30
10 43 126 1.0053 10 57 30 19 8
11 53 113 .9520 10 60 10 25 25
12 43 96 .8775 10 56 15 23 18
13 30 79 .7960 10 45 4 27 14
14 22 79 .7960 10 65 20 30 15
15 21 58 .6821 10 40 32 4 4
16 13 56 .6702 10 50 20 20 10
17 1 43 .5873 10 50 5 25 20
18 5 37 .5448 10 40 15 15 10
19 9 35 .5298 10 30 15 9 6
20 5 33 .5145 10 30 16 8 6

Total 1,208 2,945 20.0000 1,625 570 506 547

a Numbers of pedigrees and genotyped affected cases are those in the actual study (see the
second article in this series [Lewis et al. 2003 {in this issue}]). Number of ASPs (simulation
study) was assigned as described in the text. Weight p , where� �( N[cases])/mean( N[cases])
“cases” p number of genotyped affected cases in the actual study (see text).

binations of four values of lsibs, two marker densities,
and zero, one, or two parents genotyped. “Unlinked”
sets of chromosomes for 100,000 families were created
for each of six combinations of two marker densities
and zero, one, or two parents genotyped. NPL analysis
was performed for each family, and tables of NPL scores
at each marker locus were stored for each family to
create pools from which samples were then drawn.

For each GSMA replicate, a row of NPL scores for a
single chromosome was selected randomly from the table
with the appropriate lsibs, marker density, number of par-
ents typed, and chromosome type (linked-edge, linked-
mid, or unlinked), for each chromosome for each family
in each individual scan in each data set, for each full model
(lsibs, and numbers of linked/edge, linked/mid, and un-
linked chromosomes) (table 5). For example, for one of
the 100 “ed1” model (see footnote “a” of table 5 for an
explanation of model abbreviations) SCZ GSMA repli-
cates with , for sample 1, NPL scores for onel p 1.15sibs

linked/edge chromosome and 19 unlinked chromosomes
were drawn from the appropriate pools for each of 135
ASP families with two typed parents, 115 with one typed
parent, and 80 with no typed parents, and so on for the
other 19 SCZ samples, totalling 1,625 pedigrees with 570,

506, and 547 families with two, one, and zero parents
typed, respectively (table 2). Within each data set, the NPL
scores within each scan were combined across families
( ), and the maximum NPL scores�� [NPL]/ N[pedigrees]
within the 120 bins for each sample were saved in a table,
substituting 0 for negative scores. These scores were
ranked across the 120 bins, averaging the ranks of sets
of tied bins. The original analyses considered Rstudy values
in descending order and sums of ranks. Here we present
equivalent values in ascending order and average ranks
as noted above. Simulations were performed with 100
replicates for each linked model and 1,000 replicates of
unlinked data sets (no linkage present).

Weighting Procedure

Rstudy values were weighted for some analyses. Alter-
native weights were tested on 100 SCZ replicates
(ed1md4/1.15). The total NPL score was computed for
each marker, extrapolating the values for bins containing
two markers ( , and , andM3 p M2 M2 p [M1 � M2]/2)
the best score was selected for each bin. Pearson’s cor-
relation coefficient (r and R2) was computed between each
bin’s NPL score and either the unweighted or weighted
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Table 3

BP-VN Simulated Data Set

SAMPLE

ACTUAL STUDY

SIMULATION

STUDYa

NO. OF ASP FAMILIES

WITH N GENOTYPED

PARENTS

No. of
Pedigrees

No. of
Cases Weight

No. of
ASPs N p 2 N p 1 N p 0

1 2 24 .527 18 6 6 6
2 7 27 .559 17 6 6 5
3 15 41 .689 22 7 7 8
4 13 40 .681 23 8 8 7
5 5 42 .698 31 10 10 11
6 41 107 1.114 55 18 18 19
7 39 115 1.155 63 21 21 21
8 97 264 1.749 139 46 46 47
9 128 288 1.827 133 44 44 45

Total 347 948 9.000 501 166 166 169

a Numbers of pedigrees and genotyped affected cases are those in the actual
study (see the third article in this series [Segurado et al. 2003 {in this issue}]). See
the table 2 footnote and the text for details.

Ravg, comparing three weights: (a) , (b)N(pedigrees)
, or (c) . The average� �N(pedigrees) N(genotyped cases)

R2 values were 0.79 (unweighted), 0.778 (a), 0.856 (b),
and 0.856 (c). Because (b) would excessively downweight
studies with large pedigrees, was�N(genotyped cases)
adopted here. We used N from the actual corresponding
study, because a GSMA will generally include samples
with varying pedigree structures, so that the weight is a
rough approximation of relative linkage information.

Statistical Analyses

Values of PAvgRnk were computed as described above
(and see appendix A, table 1 and fig. 1). For weighted
analyses, P values computed by permutation were com-
pared with the actual probability of observing a given
value or one more extreme in the 1,000 unlinked rep-
licates, and results agreed quite closely. For example, for
SCZ, the 5% threshold was 46.815 by the permutation
procedure and 46.715 based on unlinked replicates.

For Pord, a new procedure was developed. Pord values
are pointwise measures—that is, when numbers from 1
to 120 were placed randomly in each of 20 rows (similar
to the grids of values for 120 bins for the 20 SCZ sam-
ples) and averaged, 4.69% of bins had . How-P ! .05ord

ever, 5.74% of bins met this criterion in 250 unlinked
SCZ data sets. We noted that edge bins 1 and 6 had
larger (worse) average ranks (61.68 vs. 59.91 for bins
1–4; for bin 1 vs. bin 4, 999 df, )t p 8.47 P ! .00001
(shown in fig. 3) and slightly higher mean Pord values
(.51065 vs. .50245; ; for bin 1 vs.t p 2.53 P p .011
bin 4, chromosome 1), as predicted from the lower link-
age information content at the ends of maps. Thus, the
smaller (better) Ravg of a middle bin would be evaluated
against the distribution of middle � edge bins, lowering

its PAvgRnk. When rows were permuted by chromosome
rather than by bin, mean Pord values for edge versus
middle bins were .506972 and .503461 ( [nott p 0.032
significant] for bin 1 vs. bin 4). Therefore, the analyses
reported below used permutation by chromosome to
compute Pord. However, this method (adapted for chro-
mosomes of nonuniform lengths) was not more conser-
vative in the SCZ and BPD GSMAs in the articles that
follow and was not used. Presumably, this phenomenon
is more apparent in idealized simulated data.

Distributions of PAvgRnk and Pord were compared in rep-
licates containing linked loci versus the unlinked repli-
cates, to determine how false and true positive results
could best be differentiated.

Results

Detection of Significant Linkage with NPL Scores
versus GSMA

Table 6 shows the proportion of linked bins achieving
genomewide suggestive or nominal significance levels for
weighted PAvgRnk or NPL scores, for SCZ data sets
( or 1.3). GSMA was as powerful as NPLl p 1.15sibs

and more powerful for weaker linkage, owing in part
to the fact that GSMA considers 30-cM bins so that
there is a more modest correction for multiple testing.
Figure 4 shows mean numbers of bins achieving ge-
nomewide significance ( ), us-P p .05/120 p .0004167
ing empirical thresholds from 1,000 unlinked replicates
(120,000 bins) per data set, for weighted ranks. In con-
trast to table 6, where only the disease locus bins are
considered and mid and edge bins are considered sep-
arately, in figure 4 the total number of genomewide sig-
nificant values is shown, ∼20% of which are in bins



24 Am. J. Hum. Genet. 73:17–33, 2003

Table 4

BP-N Simulated Data Set

SAMPLE

ACTUAL STUDY

SIMULATION

STUDYa

NO. OF ASP FAMILIES

WITH N GENOTYPED

PARENTS

No. of
Pedigrees

No. of
Cases Weight

No. of
ASPs N p 2 N p 1 N p 0

1 2 24 .481 18 6 6 6
2 7 39 .614 27 9 9 9
3 7 36 .589 24 8 8 8
4 15 46 .666 26 9 9 8
5 13 44 .652 26 9 9 8
6 20 48 .681 23 8 8 7
7 5 42 .637 31 10 10 11
8 22 118 1.067 80 27 27 26
9 41 107 1.016 55 18 18 19
10 39 208 1.417 141 47 47 47
11 51 128 1.112 64 21 21 22
12 65 232 1.496 139 46 46 47
13 97 336 1.801 199 66 66 67
14 128 325 1.771 164 55 55 54

Total 512 1,733 14.000 1,017 339 339 339

a See the table 2 footnote and the text for details.

adjacent to disease bins. Power was excellent to detect
at least one such value for SCZ and BP-N data sets if
the populationwide locus-specific lsibs was at least 1.3.
When , SCZ data sets had good power whenl p 1.15sibs

�5 loci were linked, as did BP-N when 10 loci were
linked. Power was poor for BP-VN.

Power to Detect Nominally Significant PAvgRnk

Power to detect PAvgRnk at the 95% and 99% thresh-
olds is shown in figure 5A–C. Unweighted results are
shown to demonstrate power in the absence of other
assumptions, such as weighting schemes. For compari-
son, table 7 summarizes power for weighted analyses for
selected models, typically ∼3%–7% greater. The data
are illustrated in figure 6. Power at the 95% threshold
was high for SCZ data sets (20 samples; 1,625 ASPs);
low for BP-VN data sets (nine studies; 501 ASPs), except
at the high lsibs; and intermediate for BP-N (14 studies,
1,017 ASPs). A limitation of GSMA is also illustrated:
for weaker genetic effects, as the number of linked loci
increases, the power to detect each individual locus de-
clines, but there can be considerable power to detect at
least some of the linked loci. Note that analyses pre-
sented below consider only lsibs values of 1.15 and 1.3,
which are sufficiently representative.

Aggregate Significance Thresholds

One can also consider aggregate thresholds of signif-
icance: does the number or pattern of bins achieving a
criterion exceed chance expectation? For PAvgRnk, in the
three sets of 1,000 unlinked GSMA replicates, only 5%

of data sets had �11 bins with . This canP ! .05AvgRnk

be considered as a criterion for concluding that linkage
is present somewhere in the genome, although this does
not determine which bins are the true positives.

Pord is a type of order statistic analysis. The P values
of sequential order statistics are not independent. Let
X[r] be the rth order statistic for the set of average ranks
(Ravg)—that is, X[r] has the value of the rth-lowest av-
erage rank, and, specifically, the value X[1] is the lowest
average rank. If X[r] has a very low Pord, there is an
increased probability that the next-most-extreme order
statistic, X[ ], will also be significant, sincer � 1 X[r �

, by definition, and X[ ] therefore has a1] ! X[r] r � 1
truncated distribution. The dependency can be deter-
mined theoretically by using the distribution function
for summed ranks (Wise et al. 1999; appendix B), but
it is difficult to compute theoretically the more general
probability of observing a cluster of N significant Pord

values. Empirically, we found that only 5% of unlinked
replicates had four or more Pord values !.05 out of the
10 lowest Ravg values. This is a second empirical thresh-
old for determining, in aggregate, whether there is evi-
dence of linkage in a GSMA.

The Relationship between Pord and PAvgRnk Values

The most striking difference between replicates with
and without linked chromosomes was the pattern of
Pord and PAvgRnk values. Table 7 shows the number of
bins with , , or both, for selectedP ! .05 P ! .05AvgRnk ord

data sets. These data are shown graphically in figure
6, for data sets, to illustrate the followingl p 1.15sibs

findings:
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Figure 2 Marker maps for simulation studies. Genotypes were simulated for 180-cM chromosomes, on each of which six 30-cM bins
(segments) were structured as shown. Marker locations are M1, M2, M3. For the SCZ data sets, some studies had 10-cM marker spacing (A)
and others had 15-cM spacing (B); all BP data sets were simulated with 10 cM spacing. Linked (disease) and unlinked (nondisease) chromosomes
were created (C). Disease loci (indicated by “D”) were located midway between two markers, either in the first (edge) or third (middle) bin.
Genomes consisted of 20 chromosomes (120 bins); see table 5 for structures of genomes.

1. As the number of linked bins and the genetic effect
and power increase, more bins have both PAvgRnk

and Pord values !.05, versus a mean of ∼0.55 bins
with these values in unlinked data sets. This is true
even when , where linkage is difficultl p 1.15sibs

to detect (Hauser et al. 1996); for example, for SCZ
data sets, with 5–10 disease loci, PAvgRnk and Pord

are !.05 for many disease and adjacent bins.
2. As power and number of linked loci increase, fewer

bins have only but not . TheP ! .05 P ! .05AvgRnk ord

number of bins with only is relatively con-P ! .05ord

stant, except that the number increases for adjacent
bins when there are more linked chromosomes—an
observation that may be relevant to interpreting the
data for the SCZ GSMA in the next article in this
series (Lewis et al. 2003 [in this issue]).

3. When multiple bins have both PAvgRnk and P !ord

, many or most of them contain linked loci, even.05
when genetic effects are too weak to produce a
significant PAvgRnk for each bin. For example, for
the SCZ replicates with 10 linked loci (l psibs

; ed2md8), an average of almost 11 linked and1.15
adjacent bins had PAvgRnk and , comparedP ! .05ord

with slightly more than 1 unlinked bin (table
7)—that is, 190% were linked or adjacent. For
unlinked data sets, !5% of GSMA replicates con-
tain four or more such bins for SCZ or BP-N, or

five or more bins for the smaller BP-VN data sets.
Therefore, conservatively, observing five or more
bins with PAvgRnk and is a genomewideP ! .05ord

criterion that suggests linkage in some or all of
these bins.

4. By contrast, when there is only a single linked locus
in the genome, only the magnitude and not the pat-
tern of PAvgRnk and Pord values can identify linkage.

Combined P Values

Finally, we considered the possibility of a test for the
significance of a pair of PAvgRnk and Pord values (Pcomb).
These values are not independent and cannot be com-
bined theoretically. One can determine, from unlinked
replicates, the frequency of values more extreme than a
given pair; however, if this is done for several pairs, the
type I error rate becomes inflated rapidly. For example,
if one restricts values to [ and ],P ! .05 P ! .05AvgRnk ord

then, for each PAvgRnk, there is a maximum Pord such that
. If one plots all such pairs on a log scale,P ! .000417comb

however, one defines a triangle within which lies 0.001
of all observed pairs of values in unlinked SCZ data sets.
There is an infinite number of ways to further restrict
this space to reduce type I error, so any one choice would
be arbitrary. In practice, a criterion of [ andP ! .05AvgRnk

] selects 0.005 of bins in unlinked replicates,P ! .05ord



26 Am. J. Hum. Genet. 73:17–33, 2003

Table 5

Types of Genomes Created in the Simulation Studies

MODELa

NO. OF CHROMOSOMES WITH

NO. OF

GSMA
REPLICATES

Disease Locus
in Bin 1
(“Edge”)

Disease Locus
in Bin 3
(“Mid”)

No Disease
Locus

(“Unlinked”)

For each lsibs value:
ed1 1 0 19 100
md1 0 1 19 100
ed1md4 1 4 15 100
ed2md8 2 8 10 100

Unlinked 0 0 20 1,000

a ed1 p 1 linked/edge chromosome; md1 p 1 linked/mid chromosome; ed1md4 p
1 linked/edge and 4 linked/chromosomes; ed2md8 p 1 linked/edge and 8 linked/mid
chromosomes. For each data set (SCZ, BP-VN, BP-N), 100 complete GSMA replicates
were created from the appropriate pools of simulated linked and unlinked chromosomes
(20 chromosomes per individual study for each replicate) for each value of lsibs (1.15,
1.2, 1.3, and 1.4) for each model; and 1,000 replicates for each data set with no linkage.
Weighted analyses were carried out for each data set for and 1.3 and forl p 1.15sibs

the unlinked replicates.

Figure 3 Mean average rank by bin for unlinked replicates. Shown are the means � SD of the average ranks of each bin (over all
chromosomes) in the 1,000 unlinked replicates of the SCZ data set. “Edge” bins (1 and 6) have lower summed ranks than “mid” bins (2–5).
This contributed to an inflated type I error rate when Pord values were computed by permuting the order of ranks in each study by bin, and
was corrected by permuting by chromosome so that summed ranks of edge and middle bins were compared with their own distributions.

and this criterion performs adequately in detecting link-
age. For example, in 100 replicates of SCZ ed2md8 data
sets ( ), 65% of disease bins, 23.4% of ad-l p 1.15sibs

jacent bins, 2.2% of other bins on linked chromosomes,
and 1% of bins on unlinked chromosomes had PAvgRnk

and ; the proportions of each of these types ofP ! .05ord

bins within the Pcomb triangle described above were
58.9%, 38.3%, 2%, and 0.9%. Thus, pending further
study, Pcomb does not define significance for individual
bins. When multiple bins are associated with PAvgRnk and

, these bins are the most likely to contain linkedP ! .05ord

loci.

Recessive Transmission

To confirm that, for simple ASP families, power would
be greater than reported here for recessive transmission
models, 100 SCZ replicates were simulated under the
recessive model described above, predicting l psibs

. Each genome contained 5 linked chromosomes (to1.15



Levinson et al.: Genome Scan Meta-Analysis: Methods 27

Table 6

Power of NPL Analysis versus GSMA (SCZ Data Set)

POWER

Genomewide Significance Suggestive Linkage (once/scan) Nominal (Pointwise Significance)

P ! .000417AvgRnk

NPL
� 4.2

P ! .0083AvgRnk

NPL
� 3.09

P ! .05AvgRnk

BIN AND

l VALUE

1 Linked
Bin

5 Linked
Bins

10 Linked
Bins

1 Linked
Bin

5 Linked
Bins

10 Linked
Bins

1 Linked
Bin

5 Linked
Bins

10 Linked
Bins

Mid bins:
lsibs p 1.15 .22 .22 .16 .03 .62 .58 .50 .34 .82 .85 .79
lsibs p 1.3 .84 .73 .58 .47 .98 .96 .90 .92 1.00 .99 .98

Edge bins:
lsibs p 1.15 .16 .17 .14 .02 .64 .55 .39 .23 .84 .81 .69
lsibs p 1.3 .63 .55 .34 .24 .89 .97 .72 .76 1.00 .89 .93

NOTE.—Shown for the SCZ data set are the proportion of linked bins whose weighted PAvgRnk values or maximum NPL scores met criteria
for genomewide significance ( [.05/120]; NPL 4.2), suggestive linkage ( [1/120]; NPL 3.09), or pointwiseP ! .000417 P ! .00833AvgRnk AvgRnk

significance ( ). For NPL, power is the average across all linked/edge or linked/mid bins for all models with that lsibs.P ! .05AvgRnk

Figure 4 Mean number of bins per replicate achieving genomewide significance. Shown is the mean number of bins (in 100 replicates
per model) with (the threshold for genomewide significance p .05/120), for weighted analyses. Diamonds represent SCZ dataP � .0004167
sets, squares represent BP-N data sets, and circles represent BP-VN data sets. Blackened symbols represent data for , unblackenedl p 1.3sibs

symbols represent data for .l p 1.15sibs

simplify the simulation, all were linked/edge) and 15
unlinked chromosomes. The power to detect a given
linked bin was 0.94 for , 0.79 for , andP ! .05 P ! .0083
0.39 for , considerably greater than that ob-P ! .000417
served for dominant transmission and (tablel p 1.15sibs

6). The mean number of bins with PAvgRnk and P !ord

was 9.48, compared with !6 for dominant trans-.05
mission (fig. 6).

Discussion

A rank-based method, GSMA, can have considerable
power to detect genetic linkage for the models studied

here. Power has been studied for PAvgRnk, the probability
of observing a bin’s average rank by chance; Pord, the
probability of observing the jth-place bin’s average rank
in jth-place bins in randomly permuted data; and the
co-occurrence of nominally significant values for both
measures. For , even the smallest data set (BP-l � 1.3sibs

N) had good/excellent power to detect at least nominally
significant PAvgRnk. Genomewide significance can be iden-
tified in larger data sets by a PAvgRnk corrected for multiple
testing ( ). GSMA had power comparable toP ! .000417
or greater than that of the NPL scores from which the
ranked data were derived, although with greatly reduced
localization of the linkage signal. Where populationwide
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Figure 5 Power to detect linked bins (unweighted analyses).
Shown are the proportions of bins containing linked loci that achieved

(blackened symbols) or �.01 (unblackened symbols), forP � .05AvgRnk

each model (see table 5), for simulated replicates of SCZ (A), BP-VN
(B) and BP-N (C) data sets. Squares represent md1 replicates, dia-
monds represent ed1 replicates, circles represent ed1md4 replicates,
and triangles represent ed2md8 replicates. See tables 2, 3, and 4 for
characteristics of each data set. per model.N p 100

genetic effects are weak, the aggregate criteria presented
above and summarized in appendix D can still provide
significant evidence that one or more bins are likely to
contain linked loci. The individual bins most likely to
be linked are those with nominally significant values of

both PAvgRnk and Pord. These criteria make it possible to
identify a set of likely linkages even when none of them
achieve genomewide significance individually. In the sec-
ond article in this series (Lewis et al. 2003 [in this issue]),
these criteria define a set of bins likely to contain loci
linked to schizophrenia.

The present analyses have many limitations, including
the following:

1. The simulations are idealized, with uniform mark-
ers and marker spacing across studies and no ge-
notyping errors. Disease loci were therefore placed
halfway between flanking markers, which reduces
power, but actual power could be less than was
observed here.

2. We did not study the effects of variable marker
density within scans. In the actual SCZ and BPD
GSMAs, we sought genome scan data for markers
at reasonably uniform density, prior to fine map-
ping of candidate regions; however, for some stud-
ies, the only available analyses included additional
markers either in the most positive regions or in
candidate regions suggested by earlier studies. Bins
with more typed markers will achieve larger av-
erage maximum linkage scores, and this bias could
be compounded if investigators chose to type more
markers when they observed slightly positive scores
in previously reported candidate regions; this issue
is discussed further in the second article in this
series (Lewis et al. 2003 [in this issue]). On the
other hand, small improvements in a bin’s within-
study rank in a few samples would have little effect
on the overall average rank across studies.

3. We did not study the effect of our decision in the
SCZ and BPD GSMAs to select a maximum linkage
score for a bin across all analyses, if multiple link-
age analyses had been carried out. GSMA results
might vary with different approaches.

4. We did not simulate data sets in which lsibsvaried
across individual studies. Simulated NPL scores
varied considerably across samples within each
data set, especially for smaller samples, but heter-
ogeneity across samples was not formally studied.
GSMA would seem inappropriate for detecting
linkage that exists in only a small proportion of
studies. If differences were hypothesized between
identifiable subsets of studies (clinical subtype, ped-
igree structure, ethnic background, etc.), it would
be preferable to analyze the subsets separately.
Most of the SCZ and BPD samples were from large,
outbred, predominantly European populations. It
seems likely that GSMA of these samples would
have the greatest power to detect genetic effects that
are present in many of the samples. But we have
not studied power in the case of substantial be-
tween-study heterogeneity.
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Table 7

Relationship between PAvgRnk and Pord: Mean Numbers of Disease, Adjacent and Unlinked Bins with PAvgRnk! .05, Pord ! .05, or Both

DATA SET

AND NO.
OF LINKED

LOCI

MEAN

POWER

( )P ! .05AvgRnk

MEAN NO.
OF BINS

WITH

P ! .05AvgRnk

MEAN NO. OF BINS

WITH PAvgRnk AND P ! .05ord

MEAN NO. OF BINS

WITH ONLY P ! .05AvgRnk

MEAN NO. OF BINS

WITH ONLY P ! .05ord

Disease Adjacent Unlinked Disease Adjacent Unlinked Disease Adjacent Unlinked

lsibsp 1.15:
BP-VN:

1 .59 6.84 .10 .12 1.01 .49 .53 4.59 .03 .10 4.51
5 .47 8.01 .62 .52 1.13 1.71 1.22 2.81 .31 .63 4.49
10 .40 8.99 1.53 1.13 .72 2.50 1.76 1.35 .78 1.35 3.07

BP-N:
1 .85 7.00 .28 .24 1.23 .57 .53 4.15 .01 .09 5.38
5 .71 9.29 2.08 1.79 1.80 1.48 1.05 1.08 .28 .63 3.69
10 .62 12.51 4.68 3.53 1.41 1.56 .91 .42 1.10 2.41 3.86

SCZ:
1 .82 6.67 .31 .37 1.25 .51 .46 3.77 .01 .05 4.78
5 .84 10.50 3.21 2.70 1.98 1.00 .70 .91 .18 .90 3.91
10 .76 13.91 6.50 4.21 1.29 1.14 .59 .18 .81 2.91 3.85

lsibs p 1.3:
BP-VN:

1 .80 6.44 .29 .26 .68 .51 .49 4.21 .02 .08 4.16
5 .70 9.53 2.04 1.76 1.82 1.48 1.01 1.42 .25 .49 3.40
10 .63 12.54 4.54 3.38 1.66 1.71 .78 .47 1.21 3.05 5.18

BP-N:
1 .96 7.20 .55 .54 1.47 .41 .65 3.58 .00 .02 4.26
5 .92 11.53 4.25 3.84 2.23 .36 .48 .37 .09 .82 3.80
10 .86 16.36 8.43 6.19 1.49 .20 .02 .03 .85 4.35 5.29

SCZ:
1 1.00 7.02 .87 .97 1.77 .13 .49 2.79 .00 .03 3.22
5 .99 13.25 4.91 5.52 2.60 .03 .11 .08 .02 .93 4.27
10 .97 18.65 9.65 7.99 .98 .01 .01 .01 .25 4.21 3.88

Unlinked:
BP-VN:

0 6.00 .58 5.42 5.49
SCZ:

0 6.00 .51 5.48 5.46

NOTE.—Power is the mean probability of observing weighted for each linked bin. Disease bins are those containing a linked locus, adjacentP ! .05AvgRnk

bins are those adjacent to a linked bin, and all other bins are considered unlinked.

5. Other issues not considered here include the power
to detect linkage when lsibs varies across loci in the
same genome, the effect of two or more disease loci
in the same bin or on the same chromosome, re-
cessive transmission models, and X- or Y-chro-
mosome linkage.

There may be advantages to other approaches to
meta-analysis. The best approach would presumably be
to perform new analyses using genotypes from each
study. For example, several schizophrenia candidate
regions have been studied by large multicenter collab-
orations that genotyped a common set of markers and
combined the samples for analysis (Gill et al. 1996;
SLCG 1996; Levinson et al. 2000). However, these stud-
ies included only a subset of collaborating SCZ linkage
samples and did not scan the genome. Dorr et al. (1997)
has suggested a logistic regression approach for ana-
lyzing allele sharing in multiple samples while taking
possible heterogeneity across samples into account. This
method was applied by Levinson et al. (2000), but ap-
plying it to all samples would require access to raw
genotypes from all studies, which was not possible here.

Badner and Gershon (2002b) developed the MSP
method for meta-analysis of candidate regions and ap-
plied it to SCZ and BPD (Badner and Gershon 2002a).
MSP identifies clusters of positive values from the actual
data and assesses significance using P values corrected
for the size of the region. Similarities and differences in
the GSMA and MSP analyses of SCZ and BPD are dis-
cussed in the following two articles (Lewis et al. 2003
[in this issue]; Segurado et al. 2003 [in this issue]). We
would note here that it could be problematic to combine
the lowest P values from genome scans, which, partic-
ularly for smaller scans, can be severely upwardly biased
(Göring et al. 2001). However, the relative power of
these methods is not yet clear. For example, perhaps by
giving full weight to very low P values, MSP could better
detect linkage in the presence of substantial heteroge-
neity across samples. GSMA might be more powerful
when small genetic effects were present in all samples.

In conclusion, simulation studies suggest that GSMA
can identify regions of the genome that are likely to
contain linked loci, if the size of the data set is appro-
priate to the magnitude of the genetic effect. While the
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Figure 6 Number of loci with nominally significant PAvgRnk, Pord, or both. Data from table 7 are shown for the BP-VN (9 studies) and
SCZ (20 studies) data sets weighted analysis, with Pord computed by permuting by chromosome, for . Blackened bars represent meanl p 1.15sibs

number of bins with both values !.05, diagonally striped bars represent bins with only , and white bars represent bins with onlyP ! .05AvgRnk

. Sets of bars are labeled by data set (BP or SCZ) and the number of linked loci in the data set (1 p md1, 5 p ed1md4, and 10 pP ! .05ord

ed2md8). Shown are the number of bins with these values for disease � adjacent bins (left-most six sets of bars), bins on chromosomes containing
no disease locus (next six sets), and bins in completely unlinked data sets (the average of BP-VN-unlinked and SCZ-unlinked, which were
virtually identical). See text for details.

method has excellent power under some circumstances
to detect genomewide significant linkage, GSMA could
prove most useful when there are many weakly linked
loci. In these cases, there may be more nominally sig-
nificant bins than expected by chance, including an ex-
cess of bins with nominally significant P values both for
the average rank and for the average rank given the
order of ranks. No method can exclude linkage in any
chromosomal region for a complex disorder, and GSMA
data should not be interpreted in this way; however,
where direct computation of linkage scores from raw
genotypes is not feasible, GSMA provides a useful first
step toward evaluating whether data from multiple ge-

nome scans provide evidence for linkage in specific chro-
mosomal regions.
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Appendix A

Summary of GSMA Ranking Procedure: Rstudy, Ravg, and PAvgRnk

First, select the most significant linkage score in each bin for each study (0 if negative):

STUDY

MAXIMUM LINKAGE SCORE IN BIN

1.1 1.2 1.3 1.4 … 22.2

1 .83 .41 1.90 3.19 … .32
2 0 0 0 .22 … .89

… … … … … … …
9 .37 .44 .78 1.44 … .66

Within each study, rank each score (Rstudy) from 1 (“best”) to 120 (“worst”), with ties (e.g., for study 2, 38 bins
including bins 1, 2, and 3 had 0 scores, leading to a rank of 101.5 for each).

STUDY

WITHIN-STUDY RANK (Rstudy) FOR BIN

1.1 1.2 1.3 1.4 … 22.2

1 45 69 9 1 … 92
2 101.5 101.5 101.5 87 … 33

… … … … … … …
9 93 87.5 59 9 … 58

Then compute the average rank (Ravg) for each bin across studies. Each Rstudy can be multiplied by a weighting
factor before averaging (e.g., the standardized ). Compute pointwise PAvgRnk (probability of the�N[affected cases]
average rank) for each bin (theoretically, or empirically if weighted) to answer the question “By chance, how
frequently would any bin have Ravg this low or lower?”

STUDY WEIGHT

WEIGHTED WITHIN-STUDY RANK FOR BIN

1.1 1.2 1.3 1.4 … 22.2

1 2.1 94.5 144.9 18.9 2.1 … 193.2
3 .9 91.35 91.35 91.35 78.3 … 29.7

… … … … … … …
9 .5 46.5 43.75 29.5 4.5 … 29

Ravg 82.6 88.9 46.3 26.1 … 50.1
Empirical PAvgRnk .9630 .9916 .1350 .0025 .2102

Thresholds of significance for Ravg are shown below for GSMAs with different numbers of studies (computed
theoretically for unweighted analyses; empirical weighted thresholds will vary slightly).

NO. OF

STUDIES

Ravg THRESHOLD FOR

PAvgRnk p

.05 .01 .001

9 41.44 34.0 26.22
14 45.29 39.14 32.57
20 47.75 42.6 36.95
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Appendix B

Summed Rank Distribution Function

The GSMA procedure is based on an understanding of the distribution of summed ranks across multiple sets of
ranked data, with within-study bins ranked in descending order (Wise et al. 1999). Under the null hypothesis of
no linkage in a bin, the ranks will be randomly assigned from each study. The distribution function is

m

P X p R p 0 , for R ! m ;�( )i
ip1

d1 R � kn � 1 mk( )p �1 , for m � R � nm ;� ( ) ( )m m � 1 kn kp0

p 0 , for R 1 nm ,

where R is summed rank, Xi is the rank of study i, m is the number of studies, n is the number of bins (120), and
d is the integer part of . For unweighted analyses, pointwise P values for R can be determined directly(R � m)/n
from this distribution, although, for weighted analyses, a permutation procedure is required, as described above.

It is mathematically equivalent to rank bins in descending order and to average rather than sum the ranks across
bins. For any R, the equivalent average ascending rank Ravg is: . Results have been expressed this(n � 1) � (R/m)
way in the current article to provide a more intuitive terminology.

Appendix C

Summary of Terminology

Bin: One of 120 30-cM autosomal segments used as
units of analysis in GSMA; bin 2.1 is the first 30 cM of
chromosome 2.

Rstudy (within-study rank): The rank of each bin within
a single study, based on the maximum linkage score (or
lowest P value) within it. The bin containing the best
score has a rank of 1. All negative and 0 scores are
considered to be tied. For weighted analyses, each raw
rank is multiplied by the study’s weighting factor.

Ravg (average rank): The average of a bin’s within-
study ranks or weighted ranks across all studies.

PAvgRnk (probability of Ravg): The pointwise probability
of observing a given Ravg for a bin in a GSMA of N
studies, determined by theoretical distribution (un-
weighted analysis only) or by permutation test (fig. 2).

Pord (probability of Ravg given the order): The pointwise
probability that, for example, a 1st-place, 2nd-place,
3rd-place, etc., bin would achieve Ravg at least this ex-
treme in a GSMA of N studies.

Genomewide significance: For , correctiona p 0.05
for 120 bins yields a threshold for genome-wide signif-
icance of .000417 for PAvgRnk or Pord. For suggestive link-
age (a result observed once per scan by chance), a p

.1/120 p 0.0083

Appendix D

Criteria for Genomewide Significance

For individual bins, the criterion for genomewide sig-
nificance is . When linkage is likely toP ! .000417AvgRnk

be present in one or more bins, the aggregate criteria
are as follows: �11 bins with , �4 binsP ! .000417AvgRnk

with among the 10 best values of Ravg, or �5P ! .05ord

bins with and . Bins withP ! .05 P ! .05AvgRnk ord

and are most likely to containP ! .05 P ! .05AvgRnk ord

linked loci. No valid combined significance criterion was
identified.
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Online Mendelian Inheritance in Man (OMIM), http://www
.ncbi.nlm.nih.gov/Omim/ (for SCZD, MAFD1, and MAFD2)
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